

Standard Model High Mass Higgs Searches at CDF

Donatella Lucchesi For the CDF Collaboration University and INFN of Padova

ICHEP2010 July 22-28 2010

Palais de Congres, Paris

The Higgs, THE Particle

- Electroweak physics is determined by local symmetry (gauge).
- This symmetry is spontaneously broken, ie. we do know that a <u>Higgs mechanism does exist</u>.
- The masses of the gauge bosons and of the fermions come from the Higgs mechanism.
- The evidence (in particular from LEP) of a Higgs mechanism does not imply the existence of the Higgs particle.
- If a Higgs boson exists and it is an elementary particle, its mass in the Standard Model (SM) is not derivable from any symmetry breaking.

The Higgs is THE particle of the Standard Model

A. Masiero

The Standard Model Higgs

Electroweak fit including all data and the results of direct searches indicates

a "light" Higgs

- $M_{\rm H}$ from fit with Higgs searches:
 - = central value $\pm 1\sigma$: $M_H = 119.4^{+13.4}_{-4.0} \text{ GeV}$
 - **2σ** interval: [114,157] GeV

These Higgs mass ranges are within reach of the Tevatron

Higgs Production at Tevatron

 $\sigma^{\text{SM}(\text{M}_H=160~\text{GeV})}\!\!\sim\!\!0.6~\text{pb}$

150

Gluon Fusion:~78%

 $gg \rightarrow H$

Donatella Lucchesi

Associate Production:~15% Vector Boson Fusion:~7% WH/ZH

 VBF

July 22, 2010

G fitter sm

M_μ [GeV]

Theory uncertainty Fit including theory errors Fit excluding theory errors

H→WW* Final State

H \rightarrow WW* dominant for M_H>135 GeV This is Tevatron definition of "High Mass"

H→ZZ can contribute above 180 GeV

W Decays:

- W \rightarrow lv, where l=e, μ or τ
- Hadronic modes have large background, not included yet Ws are required to decay:

 \times W \rightarrow lv, where l=e, μ trigger the event

 $_{\text{July }22, 2010}^{\times}$ Where l=e, μ or τ

Expected Background

- \geq Z/ $\gamma \rightarrow 11$ (DY) dominates, it tends to have low missing energy (ME_T)
 - Pythia Monte Carlo + $Z/\gamma P_T$ spectrum matched to data $\frac{1}{2}$
- > WW, WZ and ZZ Production

MC@NLO and Pythia Monte Carlo verified on data

- tt and single top: Pythia Monte Carlo & data
- \triangleright Wy, W+jet where γ or jet is misidentified as lepton Data driven + Bauer ($W\gamma$) and Alpgen(W+jet)

Cross Sections normalized to (N)NLO calculations

 $L dt = 5.9 \text{ fb}^{-1}$

Region: DY — 10 × m_H (160)

Event Selection

- $ightharpoonup P_T > 20 \text{ GeV for trigger } e \text{ or } \mu$
- \rightarrow Additional lepton(s) e/μ P_T>10 GeV and wider acceptance
- \triangleright Recently added $e\tau \mu\tau$ W decay channels with tau->hadrons
- \triangleright Require significant Missing E_T Reduce DY
- ➤ Mll >16 GeV
- \triangleright Analyze separately events with M_{ll} <16 GeV
 - Dominant background W γ where γ fakes lepton
- Exploit spin 1 Particles (WW) versus spin 0 particle (Higgs):

Leptons tend to go in the same direction

Signal Extraction

L(f	(b-1)	Signal MH=165GeV	Background	S/√B	Data
	5.9	42	3067	0.76	3050

- Simple cuts not enough to isolate signal _____ need to improve selections
- > Separate analysis into channels by signal and background contributions
 - WW+n jets (n=0,1,2+)
 - W→Tau decays
 - Final states with Same Sign leptons and Tri-leptons
- Use advanced analysis techniques:
 - Matrix Element (ME)
 - Neural Network (NN)
 - Boosted Decision Tree (BDT)
- > Optimize selections for each channel and for each Higgs mass hypothesis

Opposite Sign Lepton + 0 jets

CDF Run II Preliminary		$\int \mathcal{L} = 5.9 \; \mathrm{fb}^{-1}$		
$M_H = 165$ ($M_H = 165 \text{ GeV}/c^2$			
$\overline{tar{t}}$	2.23	土	0.66	
DY	227	\pm	62	
WW	563	土	56	
WZ	25.5	\pm	3.8	
ZZ	38.3	\pm	5.4	
$W+{ m jets}$	215	\pm	51	
$W\gamma$	155	\pm	22	
Total Background	1226	士	120	
gg o H	16.9	士	3.0	
WH	0.410	\pm	0.070	
ZH	0.416	\pm	0.059	
VBF	0.140	\pm	0.028	
Total Signal	17.8	士	3.1	
Data		1230)	

OS 0 Jets

Use likelihood ratios based on Matrix Element calculation as additional NN input variables

Dominant backgrounds

Main signal contribution

Opposite Sign Lepton + 1 jet

CDF Run II Preliminary		= 5	$.9 \; {\rm fb}^{-1}$
$M_H = 165 \text{ GeV}/c^2$			
$\overline{t}\overline{t}$	56	士	11
DY	218	\pm	49
WW	151	土	18
WZ	25.4	\pm	3.5
ZZ	10.3	\pm	1.5
W+jets	77	\pm	20
$W\gamma$	25.1	\pm	4.3
Total Background	563	±	69
gg o H	8.0	士	2.4
WH	1.13	土	0.18
ZH	0.439	\pm	0.066
VBF	0.74	土	0.13
Total Signal	10.3	土	2.5
Data		533	

Dominant backgrounds

About 20% of the signal from VH & VBF

OS 1 Jet

July 22, 2010

Don

Opposite Sign Lepton +2 or more jets

CDF Run II Preliminary		•,		
$M_H = 165 \text{ GeV/}c^2$				
$\overline{t}\overline{t}$	169	士	24	
DY	80	\pm	31	
WW	33.6	\pm	6.1	
WZ	6.8	\pm	1.3	
ZZ	3.10	\pm	0.57	
$W{+}\mathrm{jets}$	26.7	\pm	7.5	
$W\gamma$	4.4	\pm	1.2	
Total Background	324	士	50	
gg o H	2.6	±	1.8	
WH	2.50	\pm	0.35	
ZH	1.28	\pm	0.17	
VBF	1.37	±	0.23	
Total Signal	7.8	土	2.0	
Data		307		
	·			

AllSB-2JOS

tt dominant background.
Reject events with b-jets to reduce it

About 60% of the signal from VH & VBF

The discriminant

Separate Neural Networks are trained for each channel:

- using different kinematic variables
- for 19 different Higgs mass hypotheses

Signal and background templates used as final discriminants

Add New decay channel: $H \rightarrow WW \rightarrow e/\mu\tau + x$

CDF Run II Preliminary		=5	$.9 \; { m fb}^{-1}$
$m_H=160~{ m GeV}/c^2$			
dijet, γ + jet	9	士	27
Z o au au	0.8	\pm	0.4
$Z o \ell \ell$	48.8	土	6.4
W+jets	624	\pm	77
$W\gamma$	3.3	\pm	0.4
Diboson (WW, WZ, ZZ)	25.3	\pm	2.7
$t ar{t}$	15.5	\pm	2.8
Total Background	726	土	82
gg o H	1.08	\pm	0.10
WH	0.261	\pm	0.026
ZH	0.167	\pm	0.017
VBF	0.095	\pm	0.011
Total Signal	1.60	士	0.11
Data		741	

Require one lepton to be a τ \rightarrow hadrons

Jets fake τ

Signal efficiency dominated by τ reconstruction efficiency

Discriminant: Boosted Decision Tree

 $e\tau$ - $\mu\tau$ channels

- ➤ Input Variables:
 - Tau identification observables
 - Global event variables

Same Sign Lepton and Tri-lepton

Dominant background from W+jet with jet faking l

Dominant background from WZ

NN discriminant used as for OS analysis

Systematic uncertainties

Systematics on signal and background

- Affect template normalization
- Modify the shape of NN output
- Signal and background
 - Cross section [5%-67%]
 - Higher order diagrams [5%-11%]
 - Jet E_T [3%-29%]
 - Luminosity 7.3%
- Background:
 - DY ME_T modeling 26%
 - W+Jet data driven modeling 28%
 - Wγ data driven modeling 11%

Combine everything together

- A binned likelihood for each Higgs mass and for each channel is constructed including systematics and correlations
- Expected limit: background only experiments

$M_{H} = 165$	Expected	Observed	CDF Run Preliminary $\int L = 5.9 \text{ fb}^{-1}$
	limit	limit	0 ² High Mass Expected
0 jets	1.67	2.39	High Mass ± 1σ
1 jet	2.35	2.46	High Mass ± 2σ — High Mass Observed
2+ jets	3.16	6.14	— High Mass Observed
SS 1+jet	4.86	5.92	궁 10 <u>10</u>
Tri-lep. NoZ	7.37		%26
Tri-lep. Z1J	31.8	36.4	ő – – – – – – – – – – – – – – – – – – –
Tri-lep. Z2+J	9.16	10.4	
Hadr. Tau	14.5	23.5	1 Standard Model
Low Mll	11.2	7.21	110 120 130 140 150 160 170 180 190 200
Combined	1.00	1.08	Higgs Mass (GeV)
			Standard Model sensitivity

The Future

IMPROVEMENTS

Statistics

- By the end of 2011 we expect $\sim 10/\text{fb}$ per experiment
- Possible data taking extension?
- ...but not only
- optimize lepton isolation cut
- include additional trigger paths
- further optimize analysis techniques
- add hadronic W decay
- add ZZ Higgs decay

2xCDF but only high mass

Donatella Lucchesi

The Future

IMPROVEMENTS

Statistics

- By the end of 2011 we expect $\sim 10/\text{fb}$ per experiment
- Possible data taking extension?
- ...but not only
- optimize lepton isolation cut
- include additional trigger paths
- further optimize analysis techniques
- add hadronic W decay
- add ZZ Higgs decay

Donatella Lucchesi

July 22, 2010

17

Additional Material

CDF Luminosity

The CDF Detector

- General multipurpose detector
 - Excellent tracking and mass resolution:
 - Silicon inner tracker
 - Drift chamber outer tracker
- Calorimeters
 - Segmented sampling EM and Hadronic
- Muon chambers
 - \square CMU/CMP ($|\eta|$ < 0.6)
 - □ CMX $(0.6 < |\eta| < 1.0)$
- Complex geometry
 - □ Try to maximize Higgs acceptance

Silicon Vertex Detectors

Had Calorimeter

Beamline

FM Calorimeter

Tracking Chamber

Solenoid

Muon Chambers

Individual Limits

Donatella Lucchesi

Individual Limits

